Estrategias de inmovilización enzimática
PDF
XML

Palabras clave

Biocatalysis
Biotechnology
Enzyme Stability Biocatálisis
Biotecnología
Inmovilización enzimática

Cómo citar

Sánchez-Otero, M.-G., Sosa Parra, G. E. ., Quintana-Castro, R., Oliart-Ros, R. M., & Alexander-Aguilera, A. (2024). Estrategias de inmovilización enzimática. UVserva, (17), 174–195. https://doi.org/10.25009/uvs.vi17.2962

Resumen

La biocatálisis es el uso de enzimas para acelerar las reacciones químicas y posee innegables ventajas sobre la catálisis convencional, ya que disminuye sensiblemente el uso de compuestos tóxicos y disolventes, genera menos residuos peligrosos, y permite trabajar en condiciones menos agresivas de temperatura y pH, a pesar de estas bondades, las enzimas, por su naturaleza proteica, pueden ser fácilmente desnaturalizadas y al ser solubles, no son recuperables del medio de reacción, por ello, la inmovilización enzimática es una especialidad de la biocatálisis en constante desarrollo y crecimiento ya que permite una mayor estabilidad, reuso y fácil recuperación del medio, su aplicación es ya generalizada y va en aumento en industrias tales como la farmacéutica, la de los biocombustibles, la alimentaria y de producción de sabores, fragancias y cosméticos. Las diferentes estrategias para obtener derivados inmovilizados se abordan en el presente documento.

 

Enzyme immobilization strategies

Abstract: Biocatalysis is the use of enzymes to accelerate chemical reactions and has undeniable advantages over conventional catalysis, since it significantly reduces the use of toxic compounds and solvents, generates less hazardous waste, and allows working in less aggressive conditions of temperature and pH, Despite these benefits, enzymes due to their protein nature can be easily denatured and being soluble, they are not recoverable from the reaction medium, therefore, enzymatic immobilization in a specialty of biocatalysis in constant development and growth since it allows a greater stability, reuse and easy recovery of the medium, its use is already widespread and is increasing in industries such as pharmaceuticals, biofuels, the food industry and the production of flavors, fragrances and cosmetics. The different strategies to obtain immobilized derivatives are addressed in this document.

https://doi.org/10.25009/uvs.vi17.2962
PDF
XML

Citas

Ansorge, W. (2016). Next generation DNA sequencing (II): techniques, applications. Journal of Next Generation Sequencing & Applications S1(0005). https://doi.org/10.4172/2469-9853.S1-005

Arroyo, D. (1998). Inmovilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharmaceutica, 39(2), 23-39. https://tinyurl.com/dbmx9d7y

Badillo-Zeferino, G., Ruiz-López, I., Oliart-Ros, R. y Sánchez-Otero, M. (2017). Improved expression and immobilization of Geobacillus thermoleovorans CCR11 thermostable recombinant lipase. Biotechnology and Applied Biochemistry, 64(1), 62-69. https://doi.org/10.1002/bab.1444

Basso, A. y Serban, S. (2019). Industrial applications of immobilized enzymes–A review. Molecular Catalysis, 479, 110607. https://doi.org/10.1016/j.mcat.2019.110607

Brena, B., González-Pombo, P. y Batista-Viera, F. (2013). Immobilization of enzymes: a literature survey. En J. Guisan, (Ed.) Immobilization of Enzymes and Cells. Methods in Molecular Biology, (3ra ed., vol 1051, pp. 15-31). Humana Press. https://doi.org/10.1007/978-1-62703-550-7_2

Cen, Y. K., Liu, Y. X., Xue, Y. y Zheng, Y. (2019). Immobilization of enzymes in/on membranes and their applications. Advanced Synthesis & Catalysis, 361(24), 5500-5515. https://doi.org/10.1002/adsc.201900439

Choi, J., Han, S. y Kim, H. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology advances, 33(7), 1443-1454. https://doi.org/10.1016/j.biotechadv.2015.02.014

DiCosimo, R., McAuliffe, J., Poulose, A. J. y Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemichal Society Reviews, 42(15), 6437-6474. https://doi.org/10.1039/c3cs35506c

Esrafili, A., Wagner, A., Inamdar, S. y Acharya, A. (2021). Covalent organic frameworks for biomedical applications. Advanced Healthcare Materials, 10(6), 2002090. https://doi.org/10.1002/adhm.202002090

Fasim, A., More, V. y More, S. (2021). Large-scale production of enzymes for biotechnology uses. Current opinion in biotechnology, 69, 68-76. https://doi.org/10.1016/j.copbio.2020.12.002

Federsel, H., Moody, T. y Taylor, S. (2021). Recent trends in enzyme immobilization—concepts for expanding the biocatalysis toolbox. Molecules, 26(9), 2822. https://doi.org/10.3390/molecules26092822

Gao, N., Liu, J., Wang, X. y Zhang, Y. (2023). Lipase immobilized on MTMS-modified ceramic membrane for enhanced activity and stability. Journal of Materials Science, 58(39), 15352-15366. https://doi.org/10.1007/s10853-023-09000-

García-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R. y Rodrigues, R. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16), 2885-2904. https://doi.org/10.1002/adsc.201100534

Guzik, U., Hupert-Kocurek, K. y Wojcieszyńska, D. (2014). Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules, 19(7), 8995-9018. https://doi.org/10.3390/molecules19078995

Kanyong, P., Krampa, F., Aniweh, Y. y Awandare, G. (2017). Enzyme-based amperometric galactose biosensors: a review. Microchimica Acta, 184, 3663-3671. https://doi.org/10.1007%2Fs00604-017-2465-z

Kirk, O., Borchert, T. y Fuglsang, C. (2002). Industrial enzyme applications. Current opinion in biotechnology, 13(4), 345-351. https://doi.org/10.1016/s0958-1669(02)00328-2

Kocabaş, D., Lyne, J. y Ustunol, Z. (2022). Hydrolytic enzymes in the dairy industry: Applications, market and future perspectives. Trends in Food Science & Technology, 119, 467-475. https://doi.org/10.1016/j.tifs.2021.12.013

Lee, C. y Au-Duong, A. (2018). Enzyme immobilization on nanoparticles: recent applications. Emerging areas in Bioengineering, 1, 67-80. https://doi.org/10.1002/9783527803293.ch4

Liebana, S. y Drago, G. (2016). Bioconjugation and stabilisation of biomolecules in biosensors. Essays in biochemistry, 60(1), 59-68. https://doi.org/10.1042/EBC20150007

Lipińska, W., Grochowska, K. y Siuzdak, K. (2021). Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials, 11(5), 1156. https://doi.org/10.3390/nano11051156

Luo, J., Song, S., Zhang, H., Zhang, H., Zhang, J. y Wan, Y. (2020). Biocatalytic membrane: Go far beyond enzyme immobilization. Engineering in life sciences, 20(11), 441-450. https://doi.org/10.1002/elsc.202000018

Madalozzo, A. D., Muniz, L., Baron, A., Piovan, L., Mitchell, D. y Krieger, N. (2014). Characterization of an immobilized recombinant lipase from Rhizopus oryzae: synthesis of ethyl-oleate. Biocatalysis and Agricultural Biotechnology, 3(3), 13-19. https://doi.org/10.1016/j.bcab.2013.12.005

Maghraby, Y., El-Shabasy, R., Ibrahim, A. y Azzazy, H. (2023). Enzyme immobilization technologies and industrial applications. ACS omega, 8(6), 5184-5196. https://doi.org/10.1021/acsomega.2c07560

Mathews, C., Van Holde, K. y Appling, D. (2012). Biochemistry. Prentice Hall.

McDonald, A., Boyce, S. y Tipton, K. (2009). ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic acids research, 37(suppl_1), D593-D597. https://doi.org/10.1093/nar/gkn582

McDonald, A. y Tipton, K. (2023). Enzyme nomenclature and classification: The state of the art. The FEBS journal, 290(9), 2214-2231. https://doi.org/10.1111/febs.16274

Meena, J., Gupta, A., Ahuja, R., Singh, M. y Panda, A. (2021). Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. Journal of Molecular Liquids, 338, 116602. https://doi.org/10.1016/j.molliq.2021.116602

Mureseanu, M., Galarneau, A., Renard, G. y Fajula, F. (2005). A new mesoporous micelle-templated silica route for enzyme encapsulation. Langmuir, 21(10), 4648-4655. https://doi.org/10.1021/la0502241

Nadar, S., Pawar, R. y Rathod, V. (2017). Recent advances in enzyme extraction strategies: A comprehensive review. International journal of biological macromolecules, 101, 931-957. https://doi.org/10.1016/j.ijbiomac.2017.03.055

Nelson, D. y Cox, M. (2014). Lehninger: Principios de bioquímica. Omega.

Neupane, S., Patnode, K., Li, H., Baryeh, K., Liu, G., Hu, J., Chen, B., Pan, Y. y Yang, Z. (2019). Enhancing enzyme immobilization on carbon nanotubes via metal–organic frameworks for large-substrate biocatalysis. ACS applied materials & interfaces, 11(12), 12133-12141. https://doi.org/10.1021/acsami.9b01077

Nordblad, M. y Adlercreutz, P. (2013). Immobilization procedure and reaction conditions for optimal performance of Candida antarctica lipase B in transesterification and hydrolysis. Biocatalysis and Biotransformation, 31(5), 237-245. https://doi.org/10.3109/10242422.2013.837240

Oliart-Ros, R., Badillo-Zeferino, G., Quintana-Castro, R., Ruíz-López, I., Alexander-Aguilera, A., Domínguez-Chávez, J. G., Azmat, A. K., Nguyen, D. D., Nadda, A. K. y Sánchez-Otero, M. G. (2021). Production and characterization of cross-linked aggregates of Geobacillus thermoleovorans CCR11 thermoalkaliphilic recombinant lipase. Molecules, 26(24), 7569. https://doi.org/10.3390/molecules26247569

Oliveira, F., de Souza, S., Bassut, J., Álvarez, H., Garcia-Basabe, Y., Alves de Souza, R., Esteves, P. y Gonçalves, R. (2019). Enzyme-decorated covalent organic frameworks as nanoporous platforms for heterogeneous biocatalysis. Chemistry–A European Journal, 25(69), 15863-15870. https://doi.org/10.1002/chem.201903807

Pasin, B., Azón, C. y Garriga, A. (2012). Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Revista venezolana de Ciencia y Tecnología de Alimentos, 3(1), 130-151. https://oaji.net/articles/2017/4924-1495374245.pdf

Popat, A., Hartono, S., Stahr, F., Liu, J., Qiao, S. y Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801-2818. https://doi.org/10.1039/c1nr10224a

Putzbach, W. y Ronkainen, N. (2013). Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors, 13(4), 4811-4840. https://doi.org/10.3390/s130404811

Qamar, S., Asgher, M. y Bilal, M. (2020). Immobilization of alkaline protease from Bacillus brevis using Ca-alginate entrapment strategy for improved catalytic stability, silver recovery, and dehairing potentialities. Catalysis Letters, 150, 3572-3583. https://doi.org/10.1007/s10562-020-03268-y

Ren, D., Wang, Z., Jiang, S., Yu, H., Zhang, S. y Zhang, X. (2020). Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnology and Genetic Engineering Reviews, 36(2), 81-131. https://doi.org/10.1080/02648725.2020.1864187

Salazar-Leyva, J., Lizardi-Mendoza, J., Ramírez-Suarez, J., García-Sánchez, G., Ezquerra-Brauer, J., Valenzuela-Soto, E., Carvallo-Ruiz, M., Lugo-Sánchez, M. y Pacheco-Aguilar, R. (2014). Utilización de materiales a base de quitina y quitosano en la inmovilización de proteasas: efectos en su estabilización y aplicaciones. Revista mexicana de ingeniería química, 13(1), 129-150. https://tinyurl.com/3b5ep97m

Sánchez-Otero, M., Quintana-Castro, R., Rojas-Vázquez, A., Badillo-Zeferino, G., Mondragón-Vázquez, K., Espinosa-Luna, G., Kumar A. y Oliart-Ros, R. (2022). Polypropylene as a selective support for the immobilization of lipolytic enzymes: hyper‐activation, purification and biotechnological applications. Journal of Chemical Technology & Biotechnology, 97(2), 436-445. https://doi.org/10.1002/jctb.6876

Sannino, F., Costantini, A., Ruffo, F., Aronne, A., Venezia, V. y Califano, V. (2020). Covalent immobilization of β-glucosidase into mesoporous silica nanoparticles from anhydrous acetone enhances its catalytic performance. Nanomaterials, 10(1), 108. https://doi.org/10.3390/nano10010108

Sheldon, R. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied microbiology and biotechnology, 92(3), 467-477. https://doi.org/10.1007/s00253-011-3554-2

Shomal, R., Ogubadejo, B., Shittu, T., Mahmoud, E., Du, W. y Al-Zuhair, S. (2021). Advances in enzyme and ionic liquid immobilization for enhanced in MOFs for biodiesel production. Molecules, 26(12), 3512. https://doi.org/10.3390/molecules26123512

Singh, R. y Chauhan, K. (2020). Functionalization of multiwalled carbon nanotubes for enzyme immobilization. In Methods in Enzymology, 630, 25-38. https://doi.org/10.1016/bs.mie.2019.10.014

Yamaguchi, H., Kiyota, Y. y Miyazaki, M. (2018). Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts, 8(5), 174. https://doi.org/10.3390/catal8050174

Zucca, P. y Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19(9), 14139-14194. https://doi.org/10.3390/molecules190914139

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Ghian Emir Sosa Parra, Rodolfo Quintana-Castro, Rosa María Oliart-Ros, Alfonso Alexander-Aguilera, MARÍA-GUADALUPE SÁNCHEZ-OTERO