Efecto del jugo de zarzamora sobre los patrones conductuales de nado y el número de neuronas en la región cg1 de Ratas Wistar
PDF

Palabras clave

Anthocyanins
blackberry
Cg1
depression-like behavior
neurons antocianinas
Cg1
deseperanza conductual
neuronas
zarzamora

Cómo citar

Ramírez Lagunas, K. A., Vargas Moreno, I., Herrera Meza, S., Rodríguez Landa, J. F., Puga Olguín, A., & Fernández Demeneghi, R. (2022). Efecto del jugo de zarzamora sobre los patrones conductuales de nado y el número de neuronas en la región cg1 de Ratas Wistar. UVserva, (13), 121–230. https://doi.org/10.25009/uvs.vi13.2821

Resumen

El estrés puede predisponer al desarrollo de trastornos psiquiátricos como la depresión. El consumo de frutos rojos ha sido asociado a un bajo riesgo padecer depresión, debido a su alto contenido de polifenoles y antocianinas. El presente estudio evaluó el efecto del jugo de zarzamora sobre la conducta tipo depresión y el número de neuronas en la región Cg1 de la corteza prefrontal de la rata. Se utilizaron 44 ratas macho Wistar divididas en 5 grupos: vehículo, zarzamora baja y alta, fluoxetina y diazepam. Los efectos se evaluaron en las pruebas de campo abierto y nado forzado. Para el análisis histológico se realizó la tinción de violeta de cresilo. El grupo tratado con la dosis alta de zarzamora produjo efectos tipo antidepresivo y un mayor número de neuronas en la región Cg1. Los resultados sugieren que el jugo de zarzamora pudiera prevenir el desarrollo de trastornos psiquiátricos asociados al estrés.

https://doi.org/10.25009/uvs.vi13.2821
PDF

Citas

Awasthi, S., Pan, H., LeDoux, J. E., Cloitre, M., Altemus, M., McEwen, B., Silbersweig, D., & Stern, E. (2020). The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder. NeuroImage: Clinical, 28, 102-442. https://doi.org/10.1016/j.nicl.2020.102442

Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X., Lee, H. G., Smith, M. A., & Joseph, J. A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience, 7(5–6), 309–316. https://doi.org/10.1080/10284150400020482

Chang, S. C., Cassidy, A., Willett, W. C., Rimm, E. B., O’Reilly, E. J. y Okereke, O. I. (2016). Dietary flavonoid intake and risk of incident depression in midlife and older women. American Journal of Clinical Nutrition, 104(3), 704–714. https://doi.org/10.3945/ajcn.115.124545

Contreras, C. M., Rodríguez-Landa, J. F., Gutiérrez-García, A. G., y Bernal-Morales, B. (2001). The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat. Journal of Psychopharmacology, 15(4), 231–236. https://doi.org/10.1177/026988110101500401

Contreras, C. M., Martínez-Mota, L., & Saavedra, M. (1998). Desipramine restricts estral cycle oscillations in swimming. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22(7), 1121-1128.

Cryan, J. F., Page, M. E., y Lucki, I. (2005). Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology, 182(3), 335–344. https://doi.org/10.1007/s00213-005-0093-5

Cryan, J. F., & Lucki, I. (2000). Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine2C receptors. Journal of Pharmacology and Experimental Therapeutics, 295(3), 1120-1126.

De Kloet, E. R., & Molendijk, M. L. (2016). Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6503162

De Kloet, E. Ron, Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. https://doi.org/10.1038/nrn1683

Detke, M. J., Johnson, J., & Lucki, I. (1997). Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Experimental and Clinical Psychopharmacology, 5(2), 107–112. https://doi.org/10.1037/1064-1297.5.2.107

Detke, M. J., & Lucki, I. (1995). Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behavioural Brain Research, 73(1–2), 43–46. https://doi.org/10.1016/0166-4328(96)00067-8

Dias, G. P., Cavegn, N., Nix, A., Do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S. A., Nardi, A. E., Gardino, P. F., y Thuret, S. (2012). The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine and Cellular Longevity, 2012(s/n). https://doi.org/10.1155/2012/541971

Espejo, E. F., y Miñano, F. J. (1999). Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt’s test. Neuroscience, 88(2), 609–615. https://doi.org/10.1016/S0306-4522(98)00258-9

Fang, J. L., Luo, Y., Jin, S. H., Yuan, K., & Guo, Y. (2020). Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. Journal of Functional Foods, 66, 103757. https://doi.org/10.1016/J.JFF.2019.103757

Fernández-Demeneghi, R., Rodríguez-Landa, J. F., Guzmán-Gerónimo, R. I., Acosta-Mesa, H. G., Meza-Alvarado, E., Vargas-Moreno, I., & Herrera-Meza, S. (2019). Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. International Journal of Food Sciences and Nutrition, 70(7), 856–867. https://doi.org/10.1080/09637486.2019.1580680

Fernández-Demeneghi, R. (2017). Evaluación del efecto del jugo de zarzamora (Rubus fruticosus) sobre la ansiedad experimental en la rata Wistar. Universidad Veracruzana. Instituto de Neuroetología. Xalapa. http://cdigital.uv.mx/handle/123456789/48374

Golovinskaia, O. y Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. https://doi.org/10.3390/molecules26133904

Gutiérrez-García, A. G., Contreras, C. M., Mendoza-López, M. R., García-Barradas, O., y Cruz-Sánchez, J. S. (2007). Urine from stressed rats increases immobility in receptor rats forced to swim: Role of 2-heptanone. Physiology and Behavior, 91(1), 166–172. https://doi.org/10.1016/j.physbeh.2007.02.006

Hall, B. J., Pearson, L. S., y Buccafusco, J. J. (2010). Effect of the use-dependent, nicotinic receptor antagonist BTMPS in the forced swim test and elevated plus maze after cocaine discontinuation in rats. Neuroscience Letters, 474(2), 84–87.

https://doi.org/10.1016/j.neulet.2010.03.011

Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293–319. https://doi.org/10.1146/annurev.clinpsy.1.102803.143938

Hemby, S. E., Lucki, I., Gatto, G., Singh, A., Thornley, C., Matasi, J., […] y Dworkin, S. I. (1997). Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. Journal of Pharmacology and Experimental Therapeutics, 282(2), 727-733.

Huremović, D. (2019). Brief history of pandemics (pandemics throughout history). En Huremović, D. (eds) Psychiatry of Pandemics. Springer, Cham. https://doi.org/10.1007/978-3-030-15346-5_2

Imran, I., Javaid, S., Waheed, A., Rasool, M. F., Majeed, A., Samad, N., Saeed, H., Alqahtani, F., Ahmed, M. M., y Alaqil, F. A. (2021). Grewia asiatica Berry Juice Diminishes Anxiety, Depression, and Scopolamine-Induced Learning and Memory Impairment in Behavioral Experimental Animal Models. Frontiers in Nutrition, 7(January), 1–19. https://doi.org/10.3389/fnut.2020.587367

Jaffar-Medina, V., Rosado-Pérez, A. L., Flores-Serrano, A. G., Torres-Escalante, J. L., y Pineda, J. C. (2020). Los índices depresivos y antidepresivos durante la prueba de nado forzado se asocian diferencialmente con la estación del año y el ciclo estral en ratas Wistar hembras. Revista Biomédica, 31(2), 69-75.

Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature reviews neuroscience, 10(6), 459-466.

Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. American Journal of Psychiatry, 156(6), 837–841. https://doi.org/10.1176/ajp.156.6.837

Khalid, S., Barfoot, K. L., May, G., Lamport, D. J., Reynolds, S. A., y Williams, C. M. (2017). Effects of acute blueberry flavonoids on mood in children and young adults. Nutrients, 9(2). https://doi.org/10.3390/nu9020158

Landgraf, D., Long, J. E., y Welsh, D. K. (2016). Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. European Journal of Neuroscience, 43(10), 1309–1320. https://doi.org/10.1111/ejn.13085

Li, X. L., Yuan, Y. G., Xu, H., Wu, D., Gong, W. G., Geng, L. Y., Wu, F. F., Tang, H., Xu, L., & Zhang, Z. J. (2015). Changed synaptic plasticity in neural circuits of depressive-like and escitalopram-treated rats. International Journal of Neuropsychopharmacology, 18(10), 1–12. https://doi.org/10.1093/ijnp/pyv046

Lino de Oliveira, C., Bolzan, J. A., Surget, A., & Belzung, C. (2020). Do antidepressants promote neurogenesis in adult hippocampus? A systematic review and meta-analysis on naive rodents. Pharmacology and Therapeutics, 210, 107515. https://doi.org/10.1016/j.pharmthera.2020.107515

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639

Martirosyan, D. M., y Singh, J. (2015). A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209–223. https://doi.org/10.31989/ffhd.v5i6.183

National Research Council [NRC]. (2011). Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals, 327(3), 963-965.

NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio.

O’Mahony, C. M., Sweeney, F. F., Daly, E., Dinan, T. G., & Cryan, J. F. (2010). Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behaviour. Behavioural Brain Research, 213(2), 148–154. https://doi.org/10.1016/j.bbr.2010.04.038

Organización Mundial de la Salud [OMS]. (2021). Depresión. Recuperado 5 de junio de 2021, en https://www.who.int/es/news-room/fact-sheets/detail/depression

Paxinos, G. (2014). The rat brain in stereotaxic coordinates: Hard cover edition (6a ed.). Academic Press.

Peña-Sanhueza, D., Inostroza-Blancheteau, C., Ribera-Fonseca, A., y Reyes-Díaz, M. (2017). Anthocyanins in Berries and Their Potential Use in Human Health. En N. Shiomi, & V. Waisundara (Eds.), Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. IntechOpen. https://doi.org/10.5772/67104

Pérez-Esparza, R. (2017). Tratamiento farmacológico de la depresión: actualidades y futuras direcciones. Revista de la Facultad de Medicina (México), 60(5), 7-16.

Pérez-Esparza, R., Kobayashi-Romero, L. F., García Mendoza, A. M., Lamas-Aguilar, R. M., Vargas Sosa, M., Encarnación-Martínez, M., González-Manríquez, L. A., Eternod-Rodríguez, S. A., Maltos-Gómez, F., Vargas-Valencia, K. M., & Fonseca Pérez-Amador, A. (2020). Ketamina, un nuevo agente terapéutico para la depresión. Revista de La Facultad de Medicina, 63(1), 6–13. https://doi.org/10.22201/fm.24484865e.2020.63.1.02

Porsolt, R. D., Le Pichon, M., y Jalfre, M. L. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732.

Quick, J. C., & Henderson, D. F. (2016). Occupational stress: Preventing suffering, enhancing wellbeing. International Journal of Environmental Research and Public Health, 13(5), 1–11. https://doi.org/10.3390/ijerph13050459

Rapp, A., Dodds, A., Walkup, J. T., & Rynn, M. (2013). Treatment of pediatric anxiety disorders. Annals of the New York Academy of Sciences, 1304(1), 52–61. https://doi.org/10.1111/nyas.12318

Ravindran, L. N., & Stein, M. B. (2010). The pharmacologic treatment of anxiety disorders: a review of progress. The Journal of clinical psychiatry, 71(7).

Rivadeneyra-Domínguez, E., Vázquez-Luna, A., Rodríguez-Landa, J. F., Mérida-Portilla, C. V., & Díaz-Sobac, R. (2017). The protective effect of two commercial formats of Ginkgo biloba on motor alterations induced by cassava juice ( Manihot esculenta Crantz) in Wistar rats. Neurología (English Edition), 32(8), 516–522. https://doi.org/10.1016/j.nrleng.2016.02.010

Rivadeneyra-Domínguez, E., Vázquez-Luna, A., Rodríguez-Landa, J. F., & Díaz-Sobac, R. (2014). A standardized extract of Ginkgo biloba prevents locomotion impairment induced by cassava juice in Wistar rats. Frontiers in Pharmacology, 5(SEP), 1–6. https://doi.org/10.3389/fphar.2014.00213

Rynn, M., Puliafico, A., Heleniak, C., Rikhi, P., Ghalib, K., y Vidair, H. (2011). Advances in pharmacotherapy for pediatric anxiety disorders. Focus, 9(3), 299-310.

Snehunsu, A., Nayak, S. B., Kandwal, M., Piyali, A., Adiga, M., Sahoo, P., Medabala, T., Rao, K. R., y Joseph, A. (2019). 1-triacontanol cerotate isolated from Marsilea quadrifolia Linn. Safeguards hippocampal CA3 neurons and augments special memory deficit in chronic epileptic rats. International Journal of Morphology, 37(1), 265–272. https://doi.org/10.4067/S0717-95022019000100265

Souery, D., Papakostas, G. I., & Trivedi, M. H. (2006). Treatment-resistant depression. Journal o Clinical Psychiatry, 67, 16.

Tomić, M., Ignjatović, D. D., Tovilović-Kovačević, G., Krstić-Milošević, D., Ranković, S., Popović, T., y Glibetić, M. (2016).

Reduction of anxiety-like and depression-like behaviors in rats after one month of drinking: Aronia melanocarpa berry juice. Food and Function, 7(7), 3111–3120. https://doi.org/10.1039/c6fo00321d

UVEHAVIOR, (2020). UVEHAVIOR, link: https://github.com/Manolomon/uvehavior-desktop/releases

Valcheva-Kuzmanova, S., Eftimov, M., Denev, P., Krachanova, M., & Belcheva, A. (2013). Effect of aronia melanocarpa fruit juice on alcohol-induced depressive-like behavior in rats. Scripta Scientifica Medica, 45, 7-13.

Van Praag, H. M., de Kloet, E. R., & Van Os, J. (2004). Stress, the brain and depression. Cambridge University Press.

Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 28–46. https://doi.org/10.1016/j.jchemneu.2016.01.010

Williams, R. J., Mohanakumar, K. P., y Beart, P. M. (2016). Neuro-nutraceuticals: Further insights into their promise for brain health. Neurochemistry International, 95, 1–3. https://doi.org/10.1016/j.neuint.2016.03.016

Yamamoto, T., Iwamoto, T., Kimura, S., & Nakao, S. (2018). Persistent isoflurane-induced hypotension causes hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Journal of Anesthesia, 32(2), 182–188. https://doi.org/10.1007/s00540-018-2458-z

Zhu, Y., Liu, F., Zou, X., & Torbey, M. (2015). Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. Journal of Neuroscience Methods, 254, 73–79. https://doi.org/10.1016/j.jneumeth.2015.07.022

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 UVserva