Efecto del jugo de zarzamora sobre los patrones conductuales de nado y el número de neuronas en la región cg1 de Ratas Wistar

Palabras clave

depression-like behavior
neurons antocianinas
deseperanza conductual

Cómo citar

Ramírez Lagunas, K. A., Vargas Moreno, I., Herrera Meza, S., Rodríguez Landa, J. F., Puga Olguín, A., & Fernández Demeneghi, R. (2022). Efecto del jugo de zarzamora sobre los patrones conductuales de nado y el número de neuronas en la región cg1 de Ratas Wistar. UVserva, (13), 121–230. https://doi.org/10.25009/uvs.vi13.2821


El estrés puede predisponer al desarrollo de trastornos psiquiátricos como la depresión. El consumo de frutos rojos ha sido asociado a un bajo riesgo padecer depresión, debido a su alto contenido de polifenoles y antocianinas. El presente estudio evaluó el efecto del jugo de zarzamora sobre la conducta tipo depresión y el número de neuronas en la región Cg1 de la corteza prefrontal de la rata. Se utilizaron 44 ratas macho Wistar divididas en 5 grupos: vehículo, zarzamora baja y alta, fluoxetina y diazepam. Los efectos se evaluaron en las pruebas de campo abierto y nado forzado. Para el análisis histológico se realizó la tinción de violeta de cresilo. El grupo tratado con la dosis alta de zarzamora produjo efectos tipo antidepresivo y un mayor número de neuronas en la región Cg1. Los resultados sugieren que el jugo de zarzamora pudiera prevenir el desarrollo de trastornos psiquiátricos asociados al estrés.



Awasthi, S., Pan, H., LeDoux, J. E., Cloitre, M., Altemus, M., McEwen, B., Silbersweig, D., & Stern, E. (2020). The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder. NeuroImage: Clinical, 28, 102-442. https://doi.org/10.1016/j.nicl.2020.102442

Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X., Lee, H. G., Smith, M. A., & Joseph, J. A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience, 7(5–6), 309–316. https://doi.org/10.1080/10284150400020482

Chang, S. C., Cassidy, A., Willett, W. C., Rimm, E. B., O’Reilly, E. J. y Okereke, O. I. (2016). Dietary flavonoid intake and risk of incident depression in midlife and older women. American Journal of Clinical Nutrition, 104(3), 704–714. https://doi.org/10.3945/ajcn.115.124545

Contreras, C. M., Rodríguez-Landa, J. F., Gutiérrez-García, A. G., y Bernal-Morales, B. (2001). The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat. Journal of Psychopharmacology, 15(4), 231–236. https://doi.org/10.1177/026988110101500401

Contreras, C. M., Martínez-Mota, L., & Saavedra, M. (1998). Desipramine restricts estral cycle oscillations in swimming. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22(7), 1121-1128.

Cryan, J. F., Page, M. E., y Lucki, I. (2005). Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology, 182(3), 335–344. https://doi.org/10.1007/s00213-005-0093-5

Cryan, J. F., & Lucki, I. (2000). Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine2C receptors. Journal of Pharmacology and Experimental Therapeutics, 295(3), 1120-1126.

De Kloet, E. R., & Molendijk, M. L. (2016). Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6503162

De Kloet, E. Ron, Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. https://doi.org/10.1038/nrn1683

Detke, M. J., Johnson, J., & Lucki, I. (1997). Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Experimental and Clinical Psychopharmacology, 5(2), 107–112. https://doi.org/10.1037/1064-1297.5.2.107

Detke, M. J., & Lucki, I. (1995). Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behavioural Brain Research, 73(1–2), 43–46. https://doi.org/10.1016/0166-4328(96)00067-8

Dias, G. P., Cavegn, N., Nix, A., Do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S. A., Nardi, A. E., Gardino, P. F., y Thuret, S. (2012). The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine and Cellular Longevity, 2012(s/n). https://doi.org/10.1155/2012/541971

Espejo, E. F., y Miñano, F. J. (1999). Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt’s test. Neuroscience, 88(2), 609–615. https://doi.org/10.1016/S0306-4522(98)00258-9

Fang, J. L., Luo, Y., Jin, S. H., Yuan, K., & Guo, Y. (2020). Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. Journal of Functional Foods, 66, 103757. https://doi.org/10.1016/J.JFF.2019.103757

Fernández-Demeneghi, R., Rodríguez-Landa, J. F., Guzmán-Gerónimo, R. I., Acosta-Mesa, H. G., Meza-Alvarado, E., Vargas-Moreno, I., & Herrera-Meza, S. (2019). Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. International Journal of Food Sciences and Nutrition, 70(7), 856–867. https://doi.org/10.1080/09637486.2019.1580680

Fernández-Demeneghi, R. (2017). Evaluación del efecto del jugo de zarzamora (Rubus fruticosus) sobre la ansiedad experimental en la rata Wistar. Universidad Veracruzana. Instituto de Neuroetología. Xalapa. http://cdigital.uv.mx/handle/123456789/48374

Golovinskaia, O. y Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. https://doi.org/10.3390/molecules26133904

Gutiérrez-García, A. G., Contreras, C. M., Mendoza-López, M. R., García-Barradas, O., y Cruz-Sánchez, J. S. (2007). Urine from stressed rats increases immobility in receptor rats forced to swim: Role of 2-heptanone. Physiology and Behavior, 91(1), 166–172. https://doi.org/10.1016/j.physbeh.2007.02.006

Hall, B. J., Pearson, L. S., y Buccafusco, J. J. (2010). Effect of the use-dependent, nicotinic receptor antagonist BTMPS in the forced swim test and elevated plus maze after cocaine discontinuation in rats. Neuroscience Letters, 474(2), 84–87.


Hammen, C. (2005). Stress and depression. Annual Review of Clinical Psychology, 1, 293–319. https://doi.org/10.1146/annurev.clinpsy.1.102803.143938

Hemby, S. E., Lucki, I., Gatto, G., Singh, A., Thornley, C., Matasi, J., […] y Dworkin, S. I. (1997). Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. Journal of Pharmacology and Experimental Therapeutics, 282(2), 727-733.

Huremović, D. (2019). Brief history of pandemics (pandemics throughout history). En Huremović, D. (eds) Psychiatry of Pandemics. Springer, Cham. https://doi.org/10.1007/978-3-030-15346-5_2

Imran, I., Javaid, S., Waheed, A., Rasool, M. F., Majeed, A., Samad, N., Saeed, H., Alqahtani, F., Ahmed, M. M., y Alaqil, F. A. (2021). Grewia asiatica Berry Juice Diminishes Anxiety, Depression, and Scopolamine-Induced Learning and Memory Impairment in Behavioral Experimental Animal Models. Frontiers in Nutrition, 7(January), 1–19. https://doi.org/10.3389/fnut.2020.587367

Jaffar-Medina, V., Rosado-Pérez, A. L., Flores-Serrano, A. G., Torres-Escalante, J. L., y Pineda, J. C. (2020). Los índices depresivos y antidepresivos durante la prueba de nado forzado se asocian diferencialmente con la estación del año y el ciclo estral en ratas Wistar hembras. Revista Biomédica, 31(2), 69-75.

Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature reviews neuroscience, 10(6), 459-466.

Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. American Journal of Psychiatry, 156(6), 837–841. https://doi.org/10.1176/ajp.156.6.837

Khalid, S., Barfoot, K. L., May, G., Lamport, D. J., Reynolds, S. A., y Williams, C. M. (2017). Effects of acute blueberry flavonoids on mood in children and young adults. Nutrients, 9(2). https://doi.org/10.3390/nu9020158

Landgraf, D., Long, J. E., y Welsh, D. K. (2016). Depression-like behaviour in mice is associated with disrupted circadian rhythms in nucleus accumbens and periaqueductal grey. European Journal of Neuroscience, 43(10), 1309–1320. https://doi.org/10.1111/ejn.13085

Li, X. L., Yuan, Y. G., Xu, H., Wu, D., Gong, W. G., Geng, L. Y., Wu, F. F., Tang, H., Xu, L., & Zhang, Z. J. (2015). Changed synaptic plasticity in neural circuits of depressive-like and escitalopram-treated rats. International Journal of Neuropsychopharmacology, 18(10), 1–12. https://doi.org/10.1093/ijnp/pyv046

Lino de Oliveira, C., Bolzan, J. A., Surget, A., & Belzung, C. (2020). Do antidepressants promote neurogenesis in adult hippocampus? A systematic review and meta-analysis on naive rodents. Pharmacology and Therapeutics, 210, 107515. https://doi.org/10.1016/j.pharmthera.2020.107515

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639

Martirosyan, D. M., y Singh, J. (2015). A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease, 5(6), 209–223. https://doi.org/10.31989/ffhd.v5i6.183

National Research Council [NRC]. (2011). Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals, 327(3), 963-965.

NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio.

O’Mahony, C. M., Sweeney, F. F., Daly, E., Dinan, T. G., & Cryan, J. F. (2010). Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behaviour. Behavioural Brain Research, 213(2), 148–154. https://doi.org/10.1016/j.bbr.2010.04.038

Organización Mundial de la Salud [OMS]. (2021). Depresión. Recuperado 5 de junio de 2021, en https://www.who.int/es/news-room/fact-sheets/detail/depression

Paxinos, G. (2014). The rat brain in stereotaxic coordinates: Hard cover edition (6a ed.). Academic Press.

Peña-Sanhueza, D., Inostroza-Blancheteau, C., Ribera-Fonseca, A., y Reyes-Díaz, M. (2017). Anthocyanins in Berries and Their Potential Use in Human Health. En N. Shiomi, & V. Waisundara (Eds.), Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. IntechOpen. https://doi.org/10.5772/67104

Pérez-Esparza, R. (2017). Tratamiento farmacológico de la depresión: actualidades y futuras direcciones. Revista de la Facultad de Medicina (México), 60(5), 7-16.

Pérez-Esparza, R., Kobayashi-Romero, L. F., García Mendoza, A. M., Lamas-Aguilar, R. M., Vargas Sosa, M., Encarnación-Martínez, M., González-Manríquez, L. A., Eternod-Rodríguez, S. A., Maltos-Gómez, F., Vargas-Valencia, K. M., & Fonseca Pérez-Amador, A. (2020). Ketamina, un nuevo agente terapéutico para la depresión. Revista de La Facultad de Medicina, 63(1), 6–13. https://doi.org/10.22201/fm.24484865e.2020.63.1.02

Porsolt, R. D., Le Pichon, M., y Jalfre, M. L. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732.

Quick, J. C., & Henderson, D. F. (2016). Occupational stress: Preventing suffering, enhancing wellbeing. International Journal of Environmental Research and Public Health, 13(5), 1–11. https://doi.org/10.3390/ijerph13050459

Rapp, A., Dodds, A., Walkup, J. T., & Rynn, M. (2013). Treatment of pediatric anxiety disorders. Annals of the New York Academy of Sciences, 1304(1), 52–61. https://doi.org/10.1111/nyas.12318

Ravindran, L. N., & Stein, M. B. (2010). The pharmacologic treatment of anxiety disorders: a review of progress. The Journal of clinical psychiatry, 71(7).

Rivadeneyra-Domínguez, E., Vázquez-Luna, A., Rodríguez-Landa, J. F., Mérida-Portilla, C. V., & Díaz-Sobac, R. (2017). The protective effect of two commercial formats of Ginkgo biloba on motor alterations induced by cassava juice ( Manihot esculenta Crantz) in Wistar rats. Neurología (English Edition), 32(8), 516–522. https://doi.org/10.1016/j.nrleng.2016.02.010

Rivadeneyra-Domínguez, E., Vázquez-Luna, A., Rodríguez-Landa, J. F., & Díaz-Sobac, R. (2014). A standardized extract of Ginkgo biloba prevents locomotion impairment induced by cassava juice in Wistar rats. Frontiers in Pharmacology, 5(SEP), 1–6. https://doi.org/10.3389/fphar.2014.00213

Rynn, M., Puliafico, A., Heleniak, C., Rikhi, P., Ghalib, K., y Vidair, H. (2011). Advances in pharmacotherapy for pediatric anxiety disorders. Focus, 9(3), 299-310.

Snehunsu, A., Nayak, S. B., Kandwal, M., Piyali, A., Adiga, M., Sahoo, P., Medabala, T., Rao, K. R., y Joseph, A. (2019). 1-triacontanol cerotate isolated from Marsilea quadrifolia Linn. Safeguards hippocampal CA3 neurons and augments special memory deficit in chronic epileptic rats. International Journal of Morphology, 37(1), 265–272. https://doi.org/10.4067/S0717-95022019000100265

Souery, D., Papakostas, G. I., & Trivedi, M. H. (2006). Treatment-resistant depression. Journal o Clinical Psychiatry, 67, 16.

Tomić, M., Ignjatović, D. D., Tovilović-Kovačević, G., Krstić-Milošević, D., Ranković, S., Popović, T., y Glibetić, M. (2016).

Reduction of anxiety-like and depression-like behaviors in rats after one month of drinking: Aronia melanocarpa berry juice. Food and Function, 7(7), 3111–3120. https://doi.org/10.1039/c6fo00321d

UVEHAVIOR, (2020). UVEHAVIOR, link: https://github.com/Manolomon/uvehavior-desktop/releases

Valcheva-Kuzmanova, S., Eftimov, M., Denev, P., Krachanova, M., & Belcheva, A. (2013). Effect of aronia melanocarpa fruit juice on alcohol-induced depressive-like behavior in rats. Scripta Scientifica Medica, 45, 7-13.

Van Praag, H. M., de Kloet, E. R., & Van Os, J. (2004). Stress, the brain and depression. Cambridge University Press.

Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 28–46. https://doi.org/10.1016/j.jchemneu.2016.01.010

Williams, R. J., Mohanakumar, K. P., y Beart, P. M. (2016). Neuro-nutraceuticals: Further insights into their promise for brain health. Neurochemistry International, 95, 1–3. https://doi.org/10.1016/j.neuint.2016.03.016

Yamamoto, T., Iwamoto, T., Kimura, S., & Nakao, S. (2018). Persistent isoflurane-induced hypotension causes hippocampal neuronal damage in a rat model of chronic cerebral hypoperfusion. Journal of Anesthesia, 32(2), 182–188. https://doi.org/10.1007/s00540-018-2458-z

Zhu, Y., Liu, F., Zou, X., & Torbey, M. (2015). Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. Journal of Neuroscience Methods, 254, 73–79. https://doi.org/10.1016/j.jneumeth.2015.07.022

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 UVserva